
  

 
 
 

Small-Caliber Projectile Target Impact 
Angle Determined from Close  

Proximity Radiographs 
 
 
 
 

by Tyler E. Ehlers, Bernard J. Guidos, David W. Webb 
 
 
 
 
 
 

ARL-TR-3943 October 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



  

 
 
 
 
 
 
 
 
 
 
 
 

NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army 
position, unless so designated by other authorized documents. 

 
Citation of manufacturers’ or trade names does not constitute an official endorsement or 
approval of the use thereof. 

 
DESTRUCTION NOTICE—For classified documents, follow the procedures in DoD 5220.22-
M, National Industrial Security Program Operating Manual, Chapter 5, Section 7, or DoD 
5200.1-R, Information Security Program Regulation, C6.7.  For unclassified, limited documents, 
destroy by any method that will prevent disclosure of contents or reconstruction of the document. 



  

Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5069 
 

ARL-TR-3943 October 2006 
 
 
 
 

Small-Caliber Projectile Target Impact 
Angle Determined from Close  

Proximity Radiographs 
 
 

Tyler E. Ehlers, Bernard J. Guidos, David W. Webb 
Weapons and Materials Research Directorate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution unlimited.



 

ii 

  

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate 
or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, 
Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐4302.  Respondents should be aware 
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
October 2006 

2. REPORT TYPE 
Final 

3. DATES COVERED (From - To) 

Jan 2005 – Jun 2006 
5a. CONTRACT NUMBER 

NA 
5b. GRANT NUMBER 

 

4. TITLE AND SUBTITLE 
Small-Caliber Projectile Target Impact Angle Determined from Close Proximity 
Radiographs 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

62.AH80/AH84 
5e. TASK NUMBER 

 

6. AUTHOR(S) 

Tyler E. Ehlers, Bernard J. Guidos, David W. Webb 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN: AMSRD-ARL-WM-TC 
Aberdeen Proving Ground, MD 21005-5069 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TR-3943 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5069 11. SPONSOR/MONITOR'S REPORT 

      NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Small-caliber rounds have a yaw cycle of approximately three meters, but the magnitude and initial yaw varies from shot to shot, even when 
fired from the same gun. This yaw cycle becomes a variable that researchers must consider when looking at the lethality of an individual 
shot and round type, especially when testing at close ranges where the yaw cycle is high. Four orthogonal radiograph images provided 
measured pairs of pitch, yaw and their Z-locations, a curve is fitted through all four pair of points using a fundamental Aerodynamic 
equation. The fitted curve is then carried out a known distance to the target where the curve provides an expected pitch, yaw, and total angle 
of attack at impact.  Upon completion of a significant number of shots, this method can provide an accurate estimate of measurement error.  

15. SUBJECT TERMS 
small caliber, yaw cycle, fundamental aerodynamic equation, error analysis 

16. SECURITY CLASSIFICATION OF: 
19a. NAME OF RESPONSIBLE PERSON 

Tyler E. Ehlers 
a. REPORT 

U 
b. ABSTRACT 

U 
c. THIS PAGE 

U 

17.  LIMITATION 
       OF 
       ABSTRACT 

SAR 

18. NUMBER 
      OF 
      PAGES 

51 19b. TELEPHONE NUMBER (Include area code) 

410-278-1014 
Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 



 

Contents 

List of Figures iv 

Acknowledgments v 

1. Introduction 1 

2. Experiment and Analysis 1 
2.1 Range Setup.....................................................................................................................1 

2.2 Radiograph Data Reduction ............................................................................................3 

2.3 Projectile Motion.............................................................................................................7 

3. Results 12 

4. Error Estimation 16 
4.1 Trajectory Angle Error ..................................................................................................16 

4.2 Target Impact Angle Error ............................................................................................22 

5. Conclusions 28 

References 29 

Appendix A:  Maximum Likelihood Estimation of the Displacement Standard Deviation 31 

Appendix B:  Expected Value of the Square Root of an Inverted Gamma Random Variable33 

Appendix C:  Maximum Likelihood Estimation of the Three Dimensional Displacement 
Standard Deviation 35 

Abbreviations and Symbols 37 

Distribution List 39 
 

iii 



 

List of Figures 

Figure 1.  Illustration of experimental setup....................................................................................2 
Figure 2.  Example of radiograph of M855 projectile. ....................................................................3 
Figure 3.  Projectile geometry template. ..........................................................................................4 
Figure 4.  Magnification factor stand...............................................................................................5 
Figure 5.  Digitizing program digitized points and intermediate calculated values. .......................6 
Figure 6.  Digitizing program output. ..............................................................................................7 
Figure 7.  Fast and slow epicyclic modal arms................................................................................8 
Figure 8.  6-DOF simulation of M855 pitch angle vs. yaw angle. ..................................................9 
Figure 9:  Gamma at Impact Prediction Excel® Spreadsheet. ......................................................11 
Figure 10.  Measured and fitted pitch angle vs. yaw angle............................................................12 
Figure 11.  Measured and fitted pitch and yaw angle for shot 21..................................................13 
Figure 12.  Measured and calculated total impact angle for shot 21. ............................................14 
Figure 13.  Distribution of measured impact yaw occurrences, M855, 101 shots.........................15 
Figure 14.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of constant errors in the horizontal direction. ...................................17 
Figure 15.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of constant errors in the vertical directions. ......................................18 
Figure 16.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of gamma-distributed (a=.4027, b=3.25) errors in the horizontal 
direction. ..................................................................................................................................20 

Figure 17.  Comparison of relative frequency histograms of experimental RMS and simulated 
RMS under assumption of gamma-distributed (a=.1684, b=7.2) errors in the vertical 
direction. ..................................................................................................................................20 

Figure 18.  Estimated standard deviation of trajectory as a function of reading error. .................21 
Figure 19.  Least-squares fit RMS distribution from Monte Carlo simulations. ...........................23 
Figure 20.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of constant errors...............................................................................25 
Figure 21.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of gamma-distributed (a=.0164, b=12.25) errors..............................25 
Figure 22.  Monte Carlo simulation of impact yaw error distribution...........................................26 
Figure 23.  Estimated standard deviation of total impact yaw as a function of reading error. ......27 
 

iv 



 

Acknowledgments 

The authors gratefully acknowledge the following organizations and individuals. 

The guidance of Lee Magness is greatly appreciated, without his dedication this program would 
not have been possible.  The authors would like to thank the Jim Newill for funding the program.  
We would also like to thank Jason Angel for initiating the Excel Digitizing Program, Bryan 
Peterson for developing the templates and Rick Summers for continuous forethought and 
direction in optimizing the Monte Carlo Visual Basic® program,   

Additionally, the authors would like to express gratitude to the government technicians Rick 
Kane, Mark Ward, and the Dynamic Science Inc. technicians Maurice Clark, Mark Hale, and 
Ron Berry for orchestrating the experiments.  It is with great appreciation, that we thank Greg 
Watt for digitizing every shot.  Without his dedication, this project would not have been 
successful.   

. 

v 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 

vi 



 

1. Introduction 

For small-caliber projectiles such as the 5.56-millimeter (mm) M855, assessments of 
terminal ballistic performance versus soft targets are conducted by firing a single round 
into a ballistic gelatin block.  The gelatin block is then dissected and the terminal ballistic 
quantities of interest are obtained by careful measurements of the projectile’s path in the 
target.  The process is repeated for a sufficient number of shots, and the results are 
compiled to form a terminal ballistic model.  

The terminal ballistic quantities of interest are commonly represented by mathematical 
functions that use target impact angle as an independent variable.  The target impact 
angle is a scalar quantity defined here as the angle between the projectile axis and a line 
normal to the target impact surface.  The quality of the terminal ballistic model is 
influenced by the accuracy of the measured target impact angle from each experiment.  
For small-caliber projectiles, accurate determination of the target impact angle requires a 
consideration of aero-ballistic free-flight motion model parameters and awareness of 
photographic measurement limitations. 

This report presents the methodology recently developed at the U.S. Army Research 
Laboratory (ARL) to calculate the target impact yaw from data measured from close 
proximity radiographs (i.e., “x-ray images”).  The experimental setup and procedures 
used to capture the radiograph images are detailed in section 2.1.  Section 2.2 covers the 
step-by-step procedures required to reduce the radiograph images into data points.  Going 
further, these data points are used in section 2.3 where they are fit to the analytical aero-
ballistic free-flight model.  The aerodynamic fit is then extrapolated from the last 
radiograph to the target to accurately detail the impact angle of the projectile.  Section 3 
covers the results of testing using this method, and how the data sets can be manipulated.  
Section 4 covers a procedure for calculating the error of the determined target impact 
yaw; additionally the results for recent small-caliber firings are shown and the 
measurement error is estimated.  

2. Experiment and Analysis 

2.1 Range Setup 

The experimental setup followed the basic principles presented in Zook, et al. (1992) and 
is illustrated in figure 1.  The gun muzzle was positioned between 5 and 7 meters (m) 
from the gelatin block striking surface at 0° quadrant elevation.  Four orthogonal pairs of 
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radiograph stations were situated to capture images at 0.23-m [9-inch (in.)] intervals up-
range from the gel block.  The fourth, most down-range radiograph station was situated 
0.23 m from the gel block.  The 150 keV x-ray film was positioned 0.18 m to the left of 
the line of fire.  The 150 keV x-ray heads were .50 m to the right of the line of fire.  
Therefore the distance between the x-ray generating tubes and the film was 0.68 m. 

 
Figure 1.  Illustration of experimental setup. 

The side tube heads were manually aligned with a level to ensure they were placed on a 
single plane.  The top tube heads were manually aligned with a plumb bob to ensure they 
were placed on a single plane.  If the heads are aligned carefully during this process, the 
tube heads should be within 2 mm of the intended plane.  

Prior to shooting, two 24-gauge wound-steel fiducial wires were suspended.  The 
radiograph films were pressed against the fiducial wires, which serve as reference points.  
These reference points were later used to calculate projectile angular orientation and 
lateral position in their respective orthogonal planes.  The side-film fiducial wire was 
positioned horizontally parallel to the boresighted line of fire.  These axially aligned 
wires were manually pulled taut (to an estimated 40-lb tension) and clamped. Because the 
wire length was only about one meter, it is assumed that no significant catenary droop 
exists, and no such correction was applied during the subsequent analysis.  

For each radiograph film, a wire was suspended perpendicular to the shot line fiducial 
wires at the same exact downrange location as one of the radiograph heads.  These 
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perpendicular wires detail the location of the head and were subsequently used as 
reference points when calculating the projectiles downrange location.  The system of 
wires was kept in place for multiple firings.  The estimated time delay for each station 
was programmed into a data acquisition system, the projectile was launched, break 
screens initiated the time delay generators, and radiographs were obtained of the in-flight 
projectile and the fiducial wires. 

2.2 Radiograph Data Reduction 

A total of four 11 in. × 17 in. radiograph films are obtained, each having two images of 
the projectile, as shown in figure 2.  The eight projectile images are measured using a 
light table and computer digitization software.  These measurements are then processed 
to yield projectile location and angular orientation relative to the line of fire at the four 
orthogonal stations.   

 
Figure 2.  Example of radiograph of M855 projectile. 

For small-caliber projectiles, a geometry measurement template can improve the speed 
and accuracy of the manual digitization process.  The template consists of a transparency 
having concentric images and reference points of the projectile at various incidence in the 
operator’s field of view.  These images then have a template laid over them to accurately 
align the orientation of the bullet and place reference points on the film.  These reference 
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points are located on the corners of the box in figure 3, and are centered over the center 
of gravity (c.g.) of the bullet.   

 
Figure 3.  Projectile geometry template. 

The specific digitizing process is as follows.  A single piece of film is placed on a light 
table with the bullet flying right to left.  Using a light table and Visual Basic® digitizing 
program, the user takes measurements of the locations of the fiducial wires, a fixed point 
on the bullet, and the four reference points, which the user must digitize in the following 
order.  The first mark is the crossing of the fiducial wires on the right-hand side of the 
film.  The second mark is located where the user can accurately place the cursor on the 
extreme left side of the fiducial wire.  The third mark is the tip of the bullet of the first 
flash which is the right image.  The fourth through seventh marks, marks made using the 
template, are the top left reference mark, followed by the bottom left reference mark, 
followed by the top right mark, concluding with the bottom right.  The second image is 
digitized in the same manner as the first bullet image.  The entire process is repeated for 
each projectile image.  The Visual Basic® program outputs the measurements to an 
Excel® spreadsheet. 

These raw measurements are input into the digitizing Excel® program, shown in figures 
5 and 6, which calculates the projectile angular orientation.  The angle in the vertical 
plane (i.e., nose pointed up or down) is the pitch angle α.  The angle in the horizontal 
plane (i.e., nose pointed right or left) is the yaw angle β.  The total angle of attack is γ .  
The program calculates the magnification factor, also referred to as K-factor, so the 
actual location of the bullet when the image was captured can be found.  This program 
also calculates the trajectory angle, i.e., the angle that the projectile is traveling in relation 
to the axial fiducial wires.  The trajectory angle component (i.e., the angle between the 
projectile velocity vector and the fiducial wire) in the vertical plane is denoted αη and the 
trajectory angle component in the horizontal plane is denoted βη .  

The fiducial wires are digitized and used as the reference plane.  Because the fiducial 
wires set the reference plane, the radiograph can be positioned on the light table at any 
angle.  The projectile’s reference points are digitized to locate the centerline of the bullet 
and coordinates of the image.  For both orthogonal views, the angle of the bullet relative 
to the fiducial wire is found for each image using the bullet centerline and the fiducial 
wire.  The angle of the bullet relative to the fiducial wire is referred to here as the 
apparent angle.  The apparent projectile pitch angle, αA, is determined from the side film; 
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the apparent yaw angle, βA, is determined from the bottom film.  The sign conventions 
used for pitch and yaw angles are positive nose up and to the right. 

To calculate the velocity and the actual location of the projectile, the magnification factor 
must be determined.  The derivation of the magnification factor is given in Zook, et al. 
(1992, section 5.1); the pertinent equation is restated here: 

))(()(
))(()(

FFAFFOAOHFHFO

FFOAOFFOHFOFFHFHFO

dldldd
dlddddd

ionFactorMagnificat
−−−

−−−−
= . 

Where: 
dHF is the distance from the head to the film, 
dHFO is the distance from the head to the film in the orthogonal view, 
dFF is the distance from the fiducial wire to the film,  
dFFO is the distance from the fiducial wire to the film in the orthogonal view, 
lA is the apparent location, 
lAO is the apparent location in the orthogonal view. 

 
Figure 4.  Magnification factor stand. 

In order to model the projectile angular motion, the pitch and yaw angles relative to the 
velocity vector, denoted α  and β, respectively, are needed.  They are obtained by 
correcting αA and βA by the trajectory angles in both orthogonal planes, αη and βη , 
respectively.  The values of αη and βη are calculated by taking a linear least squares fit of 

5 



 

the projectile c.g. lateral location at each of the four radiograph stations as a function of 
range. 

The values of αη and βη are assumed constant over the flight interval of interest.  Linear 

aerodynamic theory demonstrates that the projectile trajectory experiences an epicyclical 
(or corkscrew-like) motion, referred to as the swerving motion (e.g., McCoy, 1998).  The 
trajectory angle components, αη and βη , vary in a fluctuating manner with respect to 

range.  The magnitude of the fluctuation in each plane is easily calculated using linear 
aerodynamic theory, and, for the parameters and conditions of this study, is insignificant. 

For small angles of attack, the total angle of attack can be approximated as: 

22 βαγ += .      (1) 
 

When testing small-caliber ammunition, as α and β are often greater than 2 degrees (deg), 
the above approximation loses accuracy.  In the present study, the following exact 
relationship is used: 

βαγ 221 tantan(tan += − .     (2) 
 

 
Figure 5.  Digitizing program digitized points and intermediate calculated values. 
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Figure 6.  Digitizing program output. 

At this point the data has been reduced to α, β, andγ  in four different locations, those 
four locations in three dimensional space, and the velocity of the projectile. 

2.3 Projectile Motion 
The target impact angle is determined from a mathematical fit of the discrete data 

measured in the radiographs to the linear aerodynamic free-flight equations of motion as 

outlined by McCoy (1998).  The complex angle of attack relative to the flight path is 

defined as: 

βαξ i+=
~ ,      (3) 

with the pitch angle α  being positive for nose up and the yaw angle β being positive for 

nose right from the gunner’s perspective. 

The projectile is assumed to be symmetric, spinning, and in flat fire.  The modeled 

trajectory length is assumed to be of low angle of attack and short enough to neglect 

damping.  Under these assumptions, the behavior of the complex angle of attack is given 

in “modal form” by: 

)()(~ 0 SSo
S

0 FFo
F

xxieieKxxieieK −′
+−′

= φφφφξ ,  (4) 

in which x is the distance along the trajectory,  is the reference location, and the modal 
parameters are defined as follows: 

0x
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FK  = magnitude of the fast epicyclic modal arm, real and positive, 

SK  = magnitude of the slow epicyclic modal arm, real and positive, 

Foφ  = reference phase angle of the fast epicyclic modal arm, evaluated at x= x0 and real, 

Soφ  = reference phase angle of the slow epicyclic modal arm, evaluated at x= x0 and real, 

Fφ′  = turning rate of the fast epicyclic modal arm, real,  

Sφ′   = turning rate of the slow epicyclic modal arm, real. 

As viewed from an onlooker standing at the muzzle, the angular motion looks like the 
nose of the projectile was etching a circular motion; the slow arm, while simultaneously 
etching another circular motion about that circular motion; the fast arm.  Figure 7 depicts 
this motion.  As the bullet travels away, both arms turn in a clockwise motion as the 
projectile spins in a clockwise direction. 

 
Figure 7.  Fast and slow epicyclic modal arms. 

Figure 8 depicts the motion of the tip throughout a half of the slow arm cycle. 
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Figure 8.  6-DOF simulation of M855 pitch angle vs. yaw angle. 

The pitch and yaw angles can be expressed separately as: 

[ ] [ ])(cos)(cos 0 SSoS0 FFoF xxKxxK −′++−′+= φφφφα    (5) 

[ ] [ ])(sin)(sin 0 SSoS0 FFoF xxKxxK −′++−′+= φφφφβ .   (6) 

For a single shot, digitization and reduction of the radiographs produces the following 
known quantities: ,...1for  ,,, nix iii =βα  in which the subscript i is the ith radiograph 
station out of n total stations.  The reference location  is taken as the midpoint of the 
trajectory encompassed by the radiographs.  The six unknown variables are the modal 
parameters: , ,

0x

FK SK  Foφ , Soφ , Fφ′ , and Sφ′ .  

The turning rates, Fφ′  and Sφ′ , are a function of the projectile’s physical properties, spin 
rate, velocity, atmospheric conditions, and the aerodynamic pitching moment coefficient 
( ).  The pitching moment coefficient is a measure of the aerodynamic moment in the 
plane of the instantaneous angle of attack.  For the M855 class of ammunition,  is 
positive, indicating that spin is required to stabilize the bullet in flight.  The values of 

αMC

αMC

Fφ′  
and Sφ′  (and thus ) have traditionally been determined from spark range αMC
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experimentation, which uses spark shadowgraph imagery to provide discrete motion data 
that can be numerically modeled using linear aerodynamic theory or 6-degrees-of-
freedom equations of motion.  The values of Fφ′  and Sφ′  cannot be accurately obtained 
from the four radiograph stations used in the present study because the trajectory length is 
too short and the number of stations is too small.  Instead, it is assumed that the turning 
rates have already been accurately determined.  By prescribing the turning rates, the 
number of unknown variables for each shot is reduced to four: , ,FK SK  Foφ , and Soφ .  

When fitting equations 5 and 6 to the experimental data, it is necessary to specify realistic 
initial values for the four parameters to be fitted.  In this study, the fitting procedure was 
incorporated into a spreadsheet that included a graph of α versus β, to facilitate the 
specification of initial values and verify the integrity of the fitted parameters.  The four 
radiograph stations encompassed approximately ⅓ of a fast mode cycle length, so the 
slow mode magnitude and orientation were easy to visualize as the center of a nearly 
circular pattern comprised of the four data points.  As such, it was convenient to specify 
the center of this circular pattern using reference pitch and yaw angles, denoted cenα  and 

cenβ  , rather than specifying  and SK Soφ .  The trigonometric relationships are: 

22
cencenSK βα +=       (7) 

cen

cen1-
S tan0 β

αφ = .                 (8) 

An iterative technique is used to fit equations 5 and 6 to the experimental data.  The 
technique determines the values of the four unknown variables by minimizing the root-
mean-square (RMS) error of the fit.  The RMS error of the fit is defined as: 

 

∑ ∑
= =

+=
n

i

n

i
ii

RMS
1 1

βα εε ,     (9) 

in which 

)x( iii
ααεα −=       (10) 

)x( iii
ββε β −= .      (11) 

 
In these above expressions, αi and β i are the values of pitch angle and yaw angle 
determined from the ith radiograph, and α(xi ) and β(x i ) are the values of pitch angle and 
yaw angle determined from the fitted parameters and evaluated at x i , the location of the 
ith radiograph.  
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After the four fitted parameters are determined, the modeled pitch and yaw angles at the 
target, αT and βT, are calculated by substituting the values back into equations 5 and 6 
and solving at xT.  The impact angle of the projectile at the target, γT , is found from the 
equation: 

TTT βαγ 221 tantantan += − .   (12) 

In practice, the user imports the calculated in-flight values from the digitizing program 
into the Gamma at Impact Prediction Excel® Spreadsheet shown in figure 9.  The 
Gamma at Impact Spreadsheet uses the linear aerodynamics model, equations 5 and 6, to 
calculate αT and βT which are used to calculate the γT.  The six modal parameters are 
compiled in the right-most column.  

 
Calculated 
RMS Error 

Figure 9:  Gamma at Impact Prediction Excel® Spreadsheet. 

To run the iterative error reducing program: 
1) Click Tools >Add-Ins >Solver.   

The Solver will then be available to open. 
2) Click Tools >Solver. 

The Solver will issue a menu box.                      
 

3) Select the Target Cell equal to the calculated RMS Error (pointed out in 

figure 9). 

4) Set the Equal To box to Minimize. 

Set the By Changing Cells to contain the cells containing the values of Kfast, phif_0, 
Alpha_center, and Beta_center.
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3. Results 

The fitted results shown in the spreadsheet of figure 9 were obtained by prescribing the 
values of the fast arm turning rate, Fφ′  , to be 211 degrees per meter (deg/m), and the 
slow arm turning rate, Sφ′ , to be 30 deg/m.  These values were obtained from the spark 
range results reported by McCoy (1985) and verified by more recent unpublished in-
house spark range firings. 

Figure 10 shows a typical result of the measured pitch angle versus yaw angle, comparing 
the actual data to the modeled motion data.  The four radiographs encompass 
approximately ⅓ of a fast mode cycle length.  The extrapolated target impact values are 
also plotted, and located approximately ½ of a fast mode cycle downrange from the first 
radiograph station.  Figure 11 shows the same data plotted versus range, illustrating the 
sinusoidal-like motion of the projectile in the pitch and yaw planes. 
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Figure 10.  Measured and fitted pitch angle vs. yaw angle. 
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Figure 11.  Measured and fitted pitch and yaw angle for shot 21. 

Figure 12 shows the measured total angle, comparing the actual data to the modeled 
motion data.  The extrapolated value at the target, γT , is apparent in this view.  This 
figure illustrates that using a linear fit of total angle obtained from the radiograph data 
has the potential to be highly inaccurate. Accurate determination of target impact angle 
using a linear fit of total angle would require the stations to be clustered extremely close 
to the target. The approach may be unfeasible considering that the current positioning of 
radiograph equipment already uses the available space. 
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Figure 12.  Measured and calculated total impact angle for shot 21. 

Figure 13 shows the target impact yaw for 101 shots of the M855 projectile from the 
same barrel.  The result is presented as a distribution from 0 to 5 deg in 0.5 deg 
increments.  For the relative muzzle and target positions used for these firings, the most 
common range of total impact angle values was 1.0 to 1.5 deg (25 occurrences).  The 
second most common range was 0.5 to 1.0 deg (20 occurrences). Considering that the 
range 0 to 0.5 deg had 11 occurrences, 56 of 101 shots had impact angles less than 2 deg.  
The largest total impact angle observed during the firings was between 5.0 and 5.5 deg, 
with one occurrence.  This series of data shows how a data set can be manipulated by 
repositioning the gun barrel to capture the range of yaws that are commonly found in 
CQB environments. 
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Figure 13.  Distribution of measured impact yaw occurrences, M855, 101 shots. 

By monitoring the development of the impact angle distribution during a firing program, 
the distribution of target impact angle occurrences could be tailored for specific purposes. 
Such tailoring might be desirable; for example, to obtain more occurrences of yaw levels 
greater than 2 deg in order to more accurately characterize the terminal ballistics in that 
regime.  The tailoring could be achieved by adjusting the distance between the muzzle 
and the target, using the total yaw behavior illustrated in figure 12 as observed for a large 
sample of shots.  Concurrently, usable estimates of desired muzzle-to-target separation 
distance that minimizes or maximizes the target impact angle could be achieved using the 
turning rates of the projectiles. 

As an illustrative example, suppose the experimentalist completed the fit from shot 21, 
figures 10, 11, and 12, and wanted to capture the minimum yaw on shot 22.  Figures 11 
or 12 indicate that by repositioning the muzzle 0.68 m closer to the target (shifting the fit 
to the right on the graph) for shot 22, the projectile will be more likely to impact the 
target during a portion of its yaw cycle where minimum values occur.  On the other hand, 
suppose the experimentalist wanted to capture the maximum yaw on shot 22.  By 
repositioning the muzzle 0.17 m farther from the target (shifting the fit to the left on the 
graph) for shot 22, the projectile will be more likely to impact the target during a portion 
of its yaw cycle where maximum values occur. 
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The length of the yaw cycle can be calculated by taking the inverse of the turning rate 
and multiplying it by one revolution.  For example, the M855 fast mode turning rate is  
211 deg/m; taking 1/211 m/deg and multiplying it by 360 deg determines that the yaw 
cycle is 1.7 m.  Therefore, minimum impact angles can be expected to occur for muzzle-
to-target separation distances of 1.7 m, 3.4 m, 5.1 m, etc.; while maximum impact angles 
can be expected to occur for muzzle-to-target separation distances of 2.5 m, 4.2 m, 5.9 m, 
etc. 

Another useful total angle distribution that could be extracted from this approach is the 
maximum angle distribution.  Using the linear aerodynamics motion theory, the local 
maximum angle of attack for an individual shot is the sum of the fast and slow mode 
arms, + .  By compiling these values for a set of shots concurrently with the target 
impact angle, additional characterization of fleet yaw can be generated.  Such additional 
information could not be obtained without a data set that is conducive to linear 
aerodynamics motion modeling. 

FK SK

4. Error Estimation 

An analysis was undertaken to estimate the accuracy of the target impact angle, γT , 
obtained for the experiments in the current study.  Two aspects of the error estimation 
were considered.  First, the errors of the trajectory angles, αη and βη , as determined from 

the linear regression fits of the projectile lateral displacements at the four radiograph 
stations, were estimated.  Second, the error of the target impact angle, γT , as determined 
from the linear aerodynamics motion fit of the pitch and yaw data, was estimated.  In 
each case, a statistical analysis of the actual RMS values from the set of shots was 
compared to the distribution of RMS values from Monte Carlo simulations.  The 
comparison of RMS errors allowed a determination to be made of the expected 
measurement errors, which are related to the errors of the quantities of interest. 

4.1 Trajectory Angle Error 

The trajectory angles αη and βη , for each shot, were determined via a linear regression of 

the projectile c.g. lateral displacements as measured at the four radiograph stations.  The 

RMS values of the fits, , are calculated as NRRR ,,, 21 K ( )∑
=

−=
4

1

2ˆ
4
1

j
ijiji ddR , where 

 is the displacement of the iijd th projectile at the jth station, and  is its lateral 

displacement error produced by the least squares fit of the displacement-range pairings 
measured at the four stations.  A frequency histogram was generated from 421 shots, 
showing the relative number of occurrences of ranges of RMS values as a function of 

ijd̂
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RMS levels.  A statistical analysis was then initiated to reproduce this histogram via 
simulation in order to relate the RMS histogram to displacement measurement error, and 
subsequently to trajectory angle error. 

The statistical analysis was performed as follows.  It can be shown (see appendix A) that 
the maximum likelihood estimator for the displacement standard deviation, denoted by 

σ , is ∑
=

=
N

i
iR

N 1

22σ̂ .  For the horizontal RMS values from the actual firings, we obtain 

a standard deviation estimate of 31.1ˆ =Hσ  mm; while in the vertical direction, we have 
21.1ˆ =Vσ  mm. 

To verify that the model used to develop this estimate of the displacement standard 
deviation is tenable, we compare in figure 14 the relative frequency histogram of 421 
horizontal RMS values from the actual firings with that of 500,000 simulated RMS 

values, whose distribution is Weibull1 with a fixed scale parameter 9255.
2

ˆ
=Hσ  mm and 

shape parameter 2.  Figure 15 is a similar comparison for the vertical RMS values. 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Horizontal RMS (mm)

R
el

at
iv

e 
fre

qu
en

cy

Experimental

Simulated (constant
error assumption)

 
Figure 14.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of constant errors in the horizontal direction. 

                                                 
1 Several parameterizations exist for the two-parameter Weibull distribution.  Compare Mood, Graybill and Boes 

(1974), Casella and Berger (1990), and Everitt (1998).  In this paper, we use the one advocated by Everitt, that is 

( ) ( )ba
xb

bX ex
a
bxf −−= 1 , since this is the same parameterization used in MATLAB®.  Under this parameterization, 

 is the scale parameter and  is the shape parameter. 0>a 0>b
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Figure 15.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of constant errors in the vertical directions. 

It is evident in both figures 14 and 15 that the statistical model used to estimate the 
displacement errors is not consistent with the experimental data.  In particular, the mode 
(i.e., the position of the peak on the abscissa) of each distribution is noticeably 
overestimated by the simulated distribution.  The inconsistency was produced by the 
assumption of a constant standard deviation of the error in the projectile lateral c.g. 
displacements.  A review of the complete set of the radiograph film shows that the 
images from different stations vary noticeably in clarity.  Those with more sharpness and 
contrast could be expected to produce more accurate readings, and so it is reasonable to 
assume that the displacement error standard deviation behaves as a random variable.  
Additionally, the processor of the film could change on a shot-to-shot basis, causing the 
films to be much darker or lighter.  Hence, we incorporated this observation into the error 
analysis by simulating sets of RMS values, where the ith RMS is drawn from a Weibull 

distribution with varying scale parameter 
2
iσ

 and shape parameter 2. 

The choice of a distribution to use in modeling the displacement errors (that is, 
Nσσσ ,,, 21 K ) is quite subjective.  In Bayesian statistical analyses, the inverted gamma 

distribution is frequently used as a prior distribution for variances; under this precedent, 
we considered the square root of an inverted gamma (RIG) distribution to model 
displacement errors.  We also considered a gamma distribution, since this relatively 
simple distribution is quite versatile for modeling random variables that are right-skewed, 
as would be expected with displacement errors.  In setting the parameters of the gamma 
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and RIG distributions – both have two parameters – we imposed the constraint that the 
expected value equals the maximum likelihood estimate of the displacement error under 
the constant error assumption. 

The expected value of a RIG random variable with scale parameter a and shape 

parameter b can be shown to equal ( )
( )b

b
a Γ

−Γ 211  (see appendix B).  Hence, we allowed 

b to vary while setting 
( )

( )

2

ˆ
21

⎥
⎦

⎤
⎢
⎣

⎡
Γ
−Γ

=
b

b
a

σ
, and chose the RIG distribution that best 

matched the experimental and simulated RMS values.  To objectively select a set of 
“best” RIG parameters, we compared the empirical cumulative distribution functions of 
experimental and simulated, using the maximum vertical distance between these curves 
as a measure of the goodness of fit, similar to a Kolmogorov-type test statistic used in 
nonparametric distribution fitting (see Conover, 1980).  Although not shown here, even 
the “best” RIG distributions had a much greater likelihood of high RMS values than was 
observed in the experimental results. 

The expected value of a gamma random variable with scale parameter a and shape 
parameter b is simply their product ab.  Therefore, we again allowed b to vary while 
setting ba σ̂= , and chose the gamma distribution that yielded the best match between 
the experimental and simulated RMS values using the Kolmogorov vertical distance to 
evaluate various models. 

For the horizontal data, the best gamma-distributed fit was obtained with a scale 
parameter of .4027 and a shape parameter of 3.25; for the vertical data, a scale parameter 
of 0.1684 and a shape parameter of 7.2 produced the best fit.  Figures 16 and 17 show the 
relative frequency histograms of the experimental RMS values overlaid with the relative 
frequencies of values obtained through simulation with these “best fit” parameters.  The 
gamma-distributed model horizontal RMS values still had relative frequencies that 
diminished at lower RMS values than observed in the experimental results, although not 
as severely as with the best RIG-distributed model.  The RMS frequency peak locations 
agree noticeably better using the gamma-distributed model. 
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Figure 16.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of gamma-distributed (a=.4027, b=3.25) errors in the 
horizontal direction. 
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Figure 17.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of gamma-distributed (a=.1684, b=7.2) errors in the 
vertical direction. 
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As we imposed in choosing the gamma distribution parameters, the simulated 
distributions produce expected standard deviation estimates in the horizontal and vertical 
lateral directions, Hσ̂  and Vσ̂  , of 1.21 and 1.31 mm, respectively.  For estimation 
purposes, we will use an approximate value of 1.25 mm.  Using this estimate of the 
lateral displacement measurement error, the Monte Carlo simulation shows the expected 
standard deviation in calculated trajectory angle to be approximately  
0.14 deg, as shown in figure 18. 
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Figure 18.  Estimated standard deviation of trajectory as a function of reading error. 

The target impact yaw error analysis to be presented subsequently demonstrates that 
minimization of the trajectory angle error is an important aspect of the experiment setup. 
A review of the setup and consideration of the major contributors to trajectory angle error 
was performed, and engineering controls were considered for future implementation.  
The first consideration is the manner that the tube heads were aligned into the orthogonal 
planes.  The heads were aligned using hand tools, levels and plumb bobs, and this 
approach provides lateral measurement accuracy to about 2 to 3 mm.  Additionally, in 
this series of shots, the radiograph fixture was placed on a table which was leveled using 
shims.  In an ideal setting, the fixture would have the ability to be anchored directly to the 
floor, by use of adjustable legs to level the fixture.  The final engineering control measure 
would be the surveying in of the tube head and fiducial wires so the actual location of 
these could be known to within a single millimeter.  If the exact locations of the tube 
heads are recorded, the digitizing program can adjust the apparent locations to the actual 
location more accurately.  If these engineering controls are done the RMS error would be 
reduced significantly to only the placing of the template on the image.  In effect, the film 
reading error would become a larger portion of the total measurement error. 
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4.2 Target Impact Angle Error 

To estimate the error of the target impact angles, γT, first the projectile angular orientation 
measurement error, ασ , needed to be accurately estimated.  Two different methods of 
evaluation were completed and compared.  The first method was conducted using linear 
aerodynamics Monte Carlo simulations of prescribed pitch and yaw motions using 
prescribed pitch and yaw errors.  The RMS values of the simulations were then compared 
to those produced from the set of linear aerodynamics fits of a large number of actual 
shots.  The second method used a statistical analysis to reproduce a histogram, via 
simulation, similar to the RMS values produced from the large number of actual 
experimental linear aerodynamic fits to estimate the error.  Upon completion of the 
individual measurement error assessment, a Monte Carlo simulation was conducted to 
relate the individual measurement errors to the target impact angle error. 

The linear aerodynamics Monte Carlo simulations were performed as follows. Several 
specific M855 motions were prescribed by specifying the six linear aerodynamic motion 
parameters: , ,FK SK Foφ , Soφ , Fφ′ , and Sφ′ .  The M855 turning rates, Fφ′  and Sφ′ , were 
prescribed to be their nominal values for each simulation.  The two modal arm 
magnitudes, and , were both fixed at 2 deg.  The slow arm reference orientation 
was prescribed to be 29 deg.  The fast arm reference orientation was varied for each 
simulation to position the specified motion within a variety of fast arm phases.  The fast 
arm reference orientation was found to have no noticeable effect on the results to be 
presented. 

FK SK

Next, simulated values of pitch and yaw angle were randomly generated at each of the 
four radiograph stations.  Using the aerodynamic motion parameters: 

, ,FK SK Foφ , Soφ , Fφ′ , and Sφ′ , as previously prescribed, allowed the calculation of the 
corresponding values of pitch and yaw angle at each of the four radiograph stations. 
Randomly generated values of pitch and yaw angle at each radiograph station were 
specified to be normally distributed about the calculated values, i.e., with no bias.  The 
standard deviation error of the prescribed pitch and yaw angles, denoted ασ , were varied 
for three different cases to be 0.1, 0.2, and 0.3 deg.  The angle error standard deviations 
were assumed to be the same in the pitch and yaw planes.  In each case, the randomly 
generated pitch and yaw angle data sets were fitted to the linear aerodynamics equations 
of motions using the same least squares approach used to analyze data sets from actual 
firings. 

For each prescribed motion, the Monte Carlo simulation was performed for 1000 cases in 
which pitch and yaw angles were randomly generated.  In each case, the RMS of the fit, 
comprised of the differences between the pitch and yaw angles from the prescribed and 
randomly generated cases, was recorded.  The results of three representative simulations 
demonstrated an approximate match of .15 deg.  Thus the Monte Carlo simulations were 
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reevaluated at five different angle error standard deviation levels of .1, .13, .15, .18, and 
.2 deg, and again the fit RMS error was recorded.  Figure 19 depicts the RMS error for all 
five Monte Carlo simulations and the actual experimental RMS errors for 287 shots 
observed versus the relative frequency. 
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Figure 19.  Least-squares fit RMS distribution from Monte Carlo simulations. 

The distribution peak location for the 0.15 deg error simulation appears to be near that of 
the actual firings.  However, the relative frequencies of the 0.15 deg error simulations 
appear to diminish at lower RMS values than the actual firings; the relative frequencies of 
the 0.20 deg error simulation appear to diminish in a manner more consistent with the 
actual firings.  It can be speculated that the difference between the distribution shapes of 
the 0.15 deg error simulation and the actual firings is attributable to the difference in 
magnitude of yaw levels that each represents.  Specifically, the simulations use a 
prescribed maximum yaw of 4 deg throughout.  The 287 actual firings, on the other hand, 
include approximately 60 shots having maximum yaw levels greater than 10 deg, and 
several between 18 to 22 deg.  These relatively high-yaw shots can be expected to have 
larger RMS fit values, even though the ratio of RMS value to maximum yaw level may 
remain constant or even decrease compared to the low yaw shots.  Given these 
considerations, a measurement error between 0.15 and 0.20 deg is determined using the 
method of using linear aerodynamics Monte Carlo simulations to estimate measurement 
error. 
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The second method used to quantify the error was performed by statistically fitting the  
three-dimensional trajectory model RMS values to a distribution.  This method lacks the 
theoretical basis used in the one-dimensional trajectory angle case previously discussed, 
because the distribution of the eight individual errors which comprise the RMS follow in 
the complex non-linear equation used to fit the data is unknown.  However, the following 
analysis continues to make use of the usual regression assumption that the sum of squared 
deviations (observed minus predicted values) follow a chi-squared distribution. The 
degrees of freedom associated with this distribution are calculated as , where 

, the number of observations, and 
4=− pn

8=n 4=p , the number of parameters fit in the model.   

It can be shown (see appendix C) that the maximum likelihood estimator for the standard 

deviation of individual errors in the 3-D model, denoted by σ , is still ∑
=

=
N

i
iR

N 1

22σ̂ .  

Based on 287 observations, we obtained a standard deviation estimate of 20.ˆ =σ  deg.  A 
comparison of the relative frequency histograms of 287 experimental 3-D RMS values 
and 500,000 simulated 3-D RMS values under the assumption of a constant standard 
deviation of 20.ˆ =σ  deg is displayed in figure 20.  We see that the fit is poor, and so we 
try to fit a model in which the standard deviation is a random quantity that changes with 
each shot.  The choice of parameters which minimized the vertical distance between the 
experimental and simulated RMS cumulative distribution functions was  and 

.  Simulated RMS values from this distribution have an expected standard 
deviation of .20 deg. the same as that obtained using the chi-squared distribution.  Figure 
21 compares the experimental and simulated relative frequency histograms of the 3-D 
RMS values when the standard deviations are modeled with this gamma distribution. 

0164.=a
25.12=b

 

24 



 

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

RMS from 3-D model (degrees)

R
el

at
iv

e 
fre

qu
en

cy

Experimental
Simulated (constant

error assumption)

 
Figure 20.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of constant errors. 
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Figure 21.  Comparison of relative frequency histograms of experimental RMS and simulated 

RMS under assumption of gamma-distributed (a=.0164, b=12.25) errors. 

The linear aerodynamics Monte Carlo simulations were also used to generate target 
impact angle error distributions, denoted here as γε , shown in figure 22.  A statistical test 
was applied to verify that the γε distributions were half-normal distributions.  The 
estimated standard deviation centered about zero, denoted γσ , was calculated for each 
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simulation using equation 13. 

N

N

i
∑

== 1

2
γ

γ

ε
σ .      (13) 

For values of ασ of 0.1, 0.2, and 0.3 deg, the corresponding values of γσ were found to 

be 0.096, 0.192, and 0.286 deg, respectively, and graphically in figure 23.  For practical 
purposes, the relationship is linear and γσ  is nearly equal to ασ  for the experimental 
setup of this study.  The fact that γσ  is nearly equal to ασ  for the experimental setup of 

this study is coincidental.  Certain variations in setup parameters would decrease the 
value of γσ  compared to ασ .  Examples would be: (1) moving the target farther 

downrange from the fourth radiograph station, (2) increasing the distance between 
radiograph stations, and (3) using three radiograph stations instead of four.  Multiple 
Monte Carlo simulations varying the fast mode reference value showed variations in 

γσ to be negligible. 
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Figure 22.  Monte Carlo simulation of impact yaw error distribution. 
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Figure 23.  Estimated standard deviation of total impact yaw as a function of reading error. 

The linear aerodynamics Monte Carlo simulations show the estimated projectile angle 
measurement error to be between 0.15 and 0.20 deg.  The statistical fit shows the 
measurement error to be approximately 0.20 deg.  Figure 23 shows that these levels of 
projectile measurement error correspond to a target impact angle error of approximately 
0.15 to 0.20 deg. 

The estimated target impact yaw error includes some influence of trajectory angle error 
via consideration of the RMS fit errors of the actual firings.  However, the linear 
aerodynamics model does not include this effect, which is manifested as a shot-to-shot 
bias in the assumed origin of the pitch versus yaw coordinate system.  That is, the origin 
of the pitch and yaw data for a particular shot is expected to be shifted by the estimated 
trajectory angle error, 0.14 deg.  The effect of this biased trajectory angle measurement 
error on the target impact yaw error can be conservatively estimated by calculating an 
adjusted target impact yaw error, γσ ′ , i.e., 

22
ηγγ σσσ +=′ ,     (14) 

 
in which no correlation is assumed to exist between γσ  and ησ .  For ησ = 0.14 deg and 

γσ = 0.15 deg, γσ ′  is calculated to be approximately 0.21 deg.  For ησ = 0.14 deg and 

γσ = 0.2 deg, γσ ′  is calculated to be approximately 0.24 deg.  

27 



 

5. Conclusions 

At the time of this writing, approximately 500 firings had been conducted and 
subsequently analyzed using the Yaw at Impact program described in this report.  The 
radiograph measurement technique and the linear aerodynamics model provide a cost 
effective and efficient approach to study the necessarily large sample sizes required to 
characterize the terminal ballistics of this class of small-caliber ammunition.  

The study demonstrated two major benefits.  First, the approach provides a means to 
accurately relocate the gun to a yaw node (i.e., minimum yaw), a maximum yaw location, 
or somewhere in between.  Second, any dataset could contribute to a fleet yaw 
characterization because a reduction for each shot yields values of the fast and slow 
modal arms, Kf  and Ks , whose sum is the maximum yaw.  This would provide an 
alternative to fleet yaw characterization in the spark range after the initial aerodynamics 
characterization is completed. 

Error estimation was an important aspect of the current effort.  Error levels were 
estimated by relating the RMS values of fitted trajectory parameters to those generated 
using statistical simulations.  By doing so, the estimated measurement errors of the 
projectile lateral displacement and angular orientation data points could be obtained.  
These error levels were directly related to the trajectory angle and impact angle errors. 
For the current set of firings, the estimated error of the projectile trajectory angle (that is 
the velocity vector orientation relative to the fiducial wire) was found to be 
approximately 0.14 deg.  The estimated error of the target impact angle using linear 
aerodynamics theory was found to be between 0.15 and 0.20 deg.  If the trajectory angle 
error is considered a bias in the system, then the target impact angle error would be 
between 0.21 and 0.24 deg. 

A review of the experiment setup was made and possible improvements were suggested. 
Most significant perhaps is that the error estimation methodology provides a basis for 
evaluating alternative radiograph setup parameters.  The approach is a useful tool for 
designing an experimental setup that can minimize error within the spatial constraints 
usually associated with radiograph equipment and instrumentation.  At the very least, 
such considerations could prevent the use of experimental parameters that could create 
larger errors than were estimated in the current study. 
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Appendix A:  Maximum Likelihood Estimation of the Displacement 
Standard Deviation 

To derive a maximum likelihood estimator for the displacement standard deviation, σ ,  
from a set of RMS values it is necessary to know their probability density function.  It is 

well established that 
( )

2

4

1

2ˆ

σ

∑
=

−
j

ijij dd
 is distributed as a chi-square random variable with 

two degrees of freedom.  Therefore ( ) i
j

ijij RddS
σσ
2ˆ1 4

1

2
=−= ∑

=
 is a chi random 

variable with two degrees of freedom, having the probability density function 

( ) )2(
2s

S sesf −=  for .  This is also the probability density function of a Weibull 

random variable with scale parameter 

0>s

2  and shape parameter 2. 

To derive the probability density function of R, we write ( ) SSgR
2
σ

== , noting that 

0>σ .  Following the methods described in Chapter 5, Section 5 of Mood, Graybill, and 
Boes (1974), the probability density function of R is given by 
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for .  This is the probability density function of a Weibull random variable with 

scale parameter 

0>r

2
σ  and shape parameter 2. 

Now suppose that a random sample of N RMS values is drawn from the Weibull 

distribution with scale parameter 
2

σ  and shape parameter 2.  The likelihood function is 
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and the log-likelihood is 
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taking the derivative with respect to σ , 
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Setting this last expression to zero and solving for σ  one gets, 
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So the maximum likelihood estimator for the displacement standard deviation, σ , is 
given by 
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Appendix B:  Expected Value of the Square Root of an Inverted Gamma 
Random Variable 

To derive the expected value of a random variable that is the square root of an inverted 
gamma (RIG) random variable, its probability density function is first needed.  First, let 
X be a gamma distributed random variable with scale parameter a and shape parameter b.  
Then the probability density function of X is 
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The expected value of Y is 
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Now let .  Then  and .  Making a change of variable inside 
the integral, we have, 
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Notice that the expression 
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function of a Weibull random variable with scale parameter a  and shape parameter 2.  
Without loss of generality, we can temporarily refer to this random variable as T.  This 
facilitates us in recognizing the integral as the ( )32 −b th raw moment of T.  That is, 
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Simplification of this final expression yields  
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Appendix C:  Maximum Likelihood Estimation of the Three 
Dimensional Displacement Standard Deviation 

To derive a maximum likelihood estimator for the 3-D displacement standard deviation, 
σ ,  from a set of RMS values it is necessary to know the probability density function of 

these RMS values.  We assume that 
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is a chi random variable with four degrees of freedom, having the probability density 

function ( ) 23
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for .  This density function does not match any of the commonly used distributions.   0>r

Now suppose that a random sample of N RMS values is drawn.  The likelihood function 
is 
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And the log-likelihood is 
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Taking the derivative with respect to σ , 
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Setting this last expression to zero and solving for σ  one gets, 
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So the maximum likelihood estimator for the displacement standard deviation, σ , is 
given by 
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Abbreviations and Symbols 

αMC    pitching moment coefficient 

K-factor   Magnification factor 

FK    Fast modal arm magnitude 

SK    Slow modal arm magnitude 

x   downrange location of projectile 

x0   the designated downrange location of projectile where x = 0 

R   Root Mean Square (RMS) 

a    scale parameter of either a gamma or Weibull distribution function  

b  shape parameter of either a gamma or Weibull distribution 
function 

 

Greek Symbols 

α    pitch angle 

β   yaw angle 

γ   total angle 

η   trajectory 

αA and βA  apparent pitch and yaw 

αC and βC  corrected pitch and yaw 

αT and βT  pitch and yaw at target 

Tγ      total angle at target 

ξ~    complex angle of attack 

αCen and βCen  fast arm pitch and yaw center 

Foφ  reference phase angle of the fast epicyclic modal arm, evaluated at 
x= x0 and real 
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Soφ  reference phase angle of the slow epicyclic modal arm, evaluated 
at x= x0 and real 

Fφ′     turning rate of the fast epicyclic modal arm, real  

Sφ′    turning rate of the slow epicyclic modal arm, real 

ασ    standard deviation of reading error 

γσ    standard deviation of error at target 

αε & βε  error for each station; difference between the αC and βC angles 

obtained from the radiographs and those obtained from the linear 
aerodynamics free-flight equations of motion 

γε    error on target caused by measurement error of radiographs 

σ    standard deviation  

σ̂    estimate of standard deviation 

Γ (x)   gamma function evaluated at x 

 

 

38 



 

Distribution List

No. of 
Copies Organization
 
1 CD US ARMY RESEARCH LAB 
  ATTN IMNE ALC IMS 
  MAIL & RECORDS MGMT 
  ADELPHI MD 20783-1197 
 
1 ELEC  ADMNSTR  
 DEFNS TECHL INFO CTR 
 ATTN DTIC OCP V MADDOX 
 8725 JOHN J KINGMAN RD 
 STE 0944 
  FT BELVOIR VA 22060-6218 
 
2 CDS US ARMY RESEARCH LAB 
 AMSRD ARL CI OK TL  
 TECHL LIB 
 2800 POWDER MILL ROAD 
 ADELPHI MD 20783-1197 
 
1 ELEC US ARMY RESEARCH LAB 
 AMSRD CI OK TP TECHL LIB 
  APG MD 21005 
 
1 HC PRODUCT MANAGER SMALL AND 
 MEDIUM CALIBER AMMO 
 SFAE AMO MAS SMC 
 LTC FLETCHER 
 BLDG  354 
 PICATINNY ARSENAL NJ 07806-5000 
 
5 HC APM SMALL & MEDIUM CALIBER 

 AMMO 
 SFAE AMO MAS SMC 
 ROBERT KOWALSKI 
 MAJ LAFONTAINE 
 FRANK HANZL 
 PAUL RIGGS 
 GREGORY DEROSA 
 BLDG 354 
 PICATINNY ARSENAL NJ 07806-5000 
 
 
 
 
 
 
 
 

No. of 
Copies Organization
 
5 HC ATK 
 ROLLIE DOHRN  MN07 LW54 
 CRAIG AAKHUS  MN07 LW54 
 MARK JANTSCHER  MN07 LW54 
 DIPAK KAMDAR  MN07 LW54 
 BOB BECKER  MN07 MW44 
 5050 LINCOLN DR 
 EDINA MN 55436 
 
1 HC ATK LAKE CITY 
 KEITH ENLOW 
 PO BOX 1000 
 INDEPENDENCE MO 64051-1000 
 
7 HC ATK LAKE CITY SMALL CALIBER 
 AMMUNITION 
 LAKE CITY ARMY AMMUNITION 

PLANT 
 DAN MANSFIELD   (5 COPIES) 
 JOHN WESTBROOK MO10 003 
 PO BOX 1000 
 INDEPENDENCE MO 64051-1000 
 
1 HC US ARMY TACOM ARDEC 
 CCAC AMSTA AR CCL C 
 GARY FLEMING 
 BLDG 65N 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC US ARMY TACOM ARDEC 
 CCAC AMSTA AR CCL B 
 JOHN MIDDLETON  
 BLDG 65N 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC US ARMY TACOM ARDEC 
 ASIC PROGRAM INTEGRATION 

OFFICE 
 JOHN A RESCH 
 BLDG 1 
 PICATINNY ARSENAL NJ 07801 
 
 
 
 
 

39 



 
No. of 
Copies Organization
 
1 HC US ARMY TACOM ARDEC 
 AMSTA AR CCL B 
 MARK D MINISI 
 BLDG 65S 
 PICATINNY ARSENAL NJ 07806-5000 
 
2 HC US ARMY TACOM ARDEC 
 SHAWN SPICKERT FULTON 
 CHAD SENSENIG 
 BLDG 65N 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC US ARMY TACOM ARDEC 
 AMSRD AAR AEM T 
 MARK NICOLICH 
 BLDG 65S 
 PICATINNY ARSENAL NJ 07806-5000 
 
2 HC US ARMY TACOM ARDEC 
 AMSRD AAR AEM 
 SAIF J MUSALLI 
 AMSRD AAR AEM L 
 ERNIE LOGSDON 
 BLDG 65S 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC US ARMY TACOM ARDEC 
 AMSRD AAR AEM I 
 RALPH MAZESKI 
 BLDG 65N 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC COMMANDER  
 US ARMY ARDEC 
 FIRING TABLES AND BALLISTICS 

DIVISION 
 AMSRD AAR AEF T 

BARBARA TILGHMAN 
 2201 ABERDEEN BOULEVARD 
 ABERDEEN PROVING GROUND MD 

21005-5001 
 
1 HC COMMANDER  
 US ARMY ARDEC 
 FIRING TABLES AND BALLISTICS 

DIVISION 
 ATTN AMSRD AAR AEF T 

FRAN MIRABELLE 
 2201 ABERDEEN BOULEVARD 
 ABERDEEN PROVING GROUND MD 

21005-5001 
 

No. of 
Copies Organization
 
1 HC US ARMY TACOM ARDEC 
 AMSTA AR AET A 
 ANTHONY P FARINA 
 BLDG 95 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC US ARMY TACOM ARDEC 
 CCAC 
 AMSRD AAR AEM I 
 DENNIS J CONWAY 
 BLDG 65N 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC US ARMY TACOM ARDEC 
 AMSTA AR FSF T 
 HANK HUDGINS 
 BLDG 382 
 PICATINNY ARSENAL NJ 07806-5000 
 
1 HC SIERRA BULLETS 
 PATRICK DALY 
 1400 WEST HENRY STREET 
 SEDALIA MO 65302-0818 
 
1 HC ST MARKS POWDER 
 GENERAL DYNAMICS 
 ROBERT PULVER 
 7121 COASTAL HIGHWAY 
 CRAWFORDVILLE FL 32327 
 
1 HC ST MARKS POWDER 
 GENERAL DYNAMICS 
 JOHNATHAN HOWARD 
 7121 COASTAL HIGHWAY 
 CRAWFORDVILLE FL 32327 
 
3 HC RADFORD ARMY AMMUNITION 

PLANT 
 KELLY BROWN 
 WJ WORRELL 
 HAYES ZIEGLER 
 PO BOX 1 ROUTE 114 
 RADFORD VA 24143 

40 



 
No. of 
Copies Organization
 
1 HC US ARMY RSRCH LAB 
 AMSRD ALR CI CT 
 B BODT 
 APG MD 21005-5067 
 
1 HC US ARMY RSRCH LAB 
 AMSRL WM B 
 M ZOLTOSKI 
 BLDG 4600 
 APG MD 21005 
 
1 HC US ARMY RSRCH LAB 
 AMSRL WM BA 
 D LYON 
 BLDG 4600 
 APG MD 21005 
 
16 HC US ARMY RSRCH LAB 
 AMSRL WM BC 
 M BUNDY 
 J DESPIRITO 
 I CELMINS 
 BERNARD J GUIDOS (3 COPIES) 
 J GARNER  
 K HEAVEY 
 J NEWILL 
 P PLOSTINS 
 J SAHU 
 S SILTON 
 DAVID W WEBB (3 COPIES) 
 P WEINACHT 
 BLDG 390 
 APG MD 21005  
 
4 HC US ARMY RSRCH LAB 
 AMSRD ARL SL BD  
 R GROTE 
 R KANE 
 R KINSLER 
 J POLESNE  
 RANGE 20 
 APG MD 21005 
 

No. of 
Copies Organization
 
4 HC US ARMY RSRCH LAB 
 AMSRL WM BD 
 A BRANT 
 B FORCH 
 M NUSCA 
 T WILLIAMS 
 BLDG 390 
 APG MD 21005 
 
3 HC US ARMY RSRCH LAB 
 AMSRL WM BF 
 W OBERLE 
 R PEARSON 
 S WILKERSON 
 BLDG 390 
 APG MD 21005 
 
1 HC US ARMY RSRCH LAB 
 AMSRL WM T 
 COL ALTHOUSE 
 BLDG 309 
 APG MD 21005 
 
4 HC US ARMY RSRCH LAB 
 AMSRL WM TA 
 M S BURKINS 
 D HACKBARTH 
 D SCHALL  
 S SCHOENFELD 
 BLDG 309 
 APG MD 21005 
 
6 HC US ARMY RSRCH LAB 
 AMSRD ARL WM TB  
 TOM ADKINS 
 RACHEL EHLERS 
 BRIAN K KRZEWINSKI 
 BRENDAN MCANDREW 
 JAY TALSMA 
 ERIC WILSON 
 RANGE 20 
 APG MD 21005 
 

41 



 
No. of 
Copies Organization
 
16 HC US ARMY RSRCH LAB 
 AMSRL WM TC 
 J ANGLE 
 R COATES 
 D DIEHL 
 TYLER E EHLERS (3 COPIES) 
 T FARRAND 
 E KENNEDY 
 J KOONTZ 
 L MAGNESS 
 B PETERSON 
 R PHILLABAUM 
 B SORENSEN 
 R SUMMERS 
 A TANK 
 G WATT 
 BLDG 309 
 APG MD 21005 
 

TOTALS:  97 Hard Copies, 3 CDs, 2 Elec. 
 

42 



 

 

 

 

 


	2.1 Range Setup
	2.2 Radiograph Data Reduction
	2.3 Projectile Motion
	4.1 Trajectory Angle Error
	4.2 Target Impact Angle Error

